8.3 Geometric Sequences and Series

Geometric Sequence: a sequence in which each term after the first is obtained by multiplying the preceding term by a fixed nonzero constant

$$
\text { Ex. } 2,6,18,54,162, \ldots
$$

Common Ratio: the amount that is found by dividing any term after the first term by the term that directly precedes it.

$$
\begin{aligned}
& \quad r=\frac{a_{n+1}}{a_{n}} \\
& r: \text { common ratio of a sequence } \\
& a_{n}: \text { the } \boldsymbol{n} \text { th term, or general terms, of a sequence }
\end{aligned}
$$

Ex. Find the common ratio of $6,-12,24,-48,96, \ldots$.
** When the common ratio of a geometric sequence is negative, the signs of the terms alternate.

Ex. Write the first five terms of the geometric sequence in which $a_{1}=24$ and $r=\frac{1}{3}$.

The General Term of a Geometric Sequence

Formula for The \boldsymbol{n} th term (the General Term) of a Geometric Sequence

$$
a_{n}=a_{1} r^{n-1}
$$

Ex. Find a_{75} of the geometric sequence with $a_{1}=\frac{1}{2}$ and $r=-2$.

Ex. (\#36) Find the fifth term of a geometric sequence from the given information.

$$
a_{1}=16 \text { and } a_{2}=-12
$$

Ex. Given the geometric sequence $12,6,3, \frac{3}{2}, \ldots$.
(a) Write a formula for the nth term of the geometric sequence. (Use the formula above.)
(b) Use the formula for a_{n} to find a_{7}.

* The Sum of the First \boldsymbol{n} Terms of a Geometric Sequence

Formula for the Sum of the First \boldsymbol{n} Terms of a Geometric Sequence

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1
$$

Ex. Find the sum of the first 11 terms of the geometric sequence:

$$
4,-12,36,-108, \ldots
$$

Ex. Find $\sum_{i=1}^{7} 4(-3)^{i}$. Use the formula for the sum of the first n terms of a geometric sequence.

* Geometric Series

Infinite Geometric Series

An infinite sum of the form: $a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1}+\cdots=\sum_{i=1}^{\infty} a_{1}(r)^{i-1}$
Formula for the Sum of an Infinite Geometric Sequence

$$
S_{\infty}=\frac{a_{1}}{1-r},|r|<1
$$

Ex. Find $\sum_{i=1}^{\infty} 4(0.3)^{i-1}$

Ex. Find $3-1+\frac{1}{3}-\frac{1}{9}+\cdots$

Ex. Express the repeating decimal as a fraction in lowest terms.
(a) $0 . \overline{5}=\frac{5}{10}+\frac{5}{100}+\frac{5}{1000}+\cdots$
(b) $0 . \overline{72}$

Ex. The general term of a sequence is given. Determine whether the sequence is arithmetic, geometric, or neither. If the sequence is arithmetic, find the common difference; if it is geometric, find the common ratio.
(a) $a_{n}=n-3$
(b) $a_{n}=\left(\frac{1}{2}\right)^{n}$
(c) $a_{n}=n^{2}-3$

